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RESEARCH MeEMORANDUM

INVESTIGATION OF THE EFFECTS OF MODEL SCALE AND STREAM
REYNOLDS NUMBER ON THE AERODYNAMIC CHARACTERISTICS
OF TWO RECTANGULAR WINGS AT SUPERSCONIC SPEEDS
IN THE LANGLEY 9-INCH SUPERSONIC TUNNEL

By Donald E. Coletti
SUMMARY

An investigation has been mede in the Langley 9-inch supersonic
tunnel at Mach numbers 1.62, 1.94, and 2.41 to determine the effects of
model scale and stream Reynolds number on the 1ift, drag, and pitching
moment of two geometrically similer rectangular wings. The wings had
symmetrical circular-arc cross sections with aspect ratios of 1.80,
thickness ratios of 0.059, and a scale factor of spproximastely 0.52.

The Reynolds numbers of the tests based on the wing chords varied between
0.13 x 106 and 2.96 x 106.

The results show that effects of scale are smsll and, in most cases,
negligible. With minor exceptions at the very low Reynolds numbers of
these tests, the effect of increasing Reynolds number (by increasing
tunnel stagnation pressure) was to increase the 1ift, decrease the
pitching moment, and decrease the drag in s manner consistent with the
change in laminar skin-friction drag to a point where transition appeared
to occur.

INTRODUCTION

The present availebility of experimental information on the effects
of model scale and of stream Reynolds number of the flow on the aero-
dynamic characteristies of a rectangular wing is somewhat meager and
isolated. Some resulits due to scele and Reynolds number effects may be
found in references 1 to 6. References 1 to 5 conteln information
obtained at subsonic speeds for wings alone, and reference 6 conteins
results for wing-body combinations cbtained at both subsonic and super-
sonic speeds.
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The purpose of the present investigetion was to make a series of
tests in the Langley 9-inch supersonic tunnel to determine the effect of
nodel scale for & range of Reynolds nuxbers by observing the variations
in lift-curve and pitching-moment-curve slopes and minimmm drag coef-
ficients of two geometrically similer rectanguler wings. A secondary
purpose of the test program was to determine the effect of & sitrean
Reynolds number varietion on the aerodynamic characteristics of the same
two rectangular wings. The wings had symmetrical circular-arc cross
sections with aspect ratios of 1.80, thickness ratios of 0.059, and s
scale factor of azpproximately 0.52. The tests were conducted at
Reynolds numbers varying between 0.13 x 106 and 2.96 x 106 (based on the
wing chords) and st Mach numbers of 1.62, 1.94, and 2.41. The angle of
attack of the wings was varied between 76 and -6°.

SYMBOLS
A aspect ratio, %
b wing span
c wing chord
o angle of attack
o, 1ift coefficient, Lt
ad
Cn pltcking-moment coefficient about 50 percent chord,
asc
Cp drag coefflcient, Drfg
acy, .
daC
Cp =—2 at =0
Ta  Gg L
CD” theoretlesl wave-drag coefficient
L4
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CD (1am.) theoretical laminar skin-friction drag coefficient
CDf(turb.) theoretical turbulent skin-friction drag coefiiclent
c.p. center of pressure -

M Mach number

a dynamic pressure, ng

o stream density

R Reynolds number, Egs

S wing area

T meximum wing thickness

t/e thickness ratio

v free-stream velocity

I coefficient of viscosity

APPARATUS AND TESTS

Tunnel

The Lengley 9-inch supersonic tunnel is a closed-throat, single
return, continuous operating tunnel in which the test sectlon is approx-
imately 9 inches square. Different test Mach numbers are achieved through
the use of interchangeashble nozzle blocks. HEleven fine-mesh turbulence-
damping screens are installed in the settling chamber ahead of the super-
sonic nozzle. The pressure, temperature, and humldity can be controlled
during the tunnel operation.

Models
The models consisted of two geometrically similar rectangular wings,

each having a symmetrical circular-arc cross secilon and an aspect ratio
of 1.80 and a thickness retio of 0.059. The size of one wing along with
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the sting and windshield was reduced by & scale factor of approximately
0.52 from that of a larger wing. A sketeh of the large wing with the
pertinent dimensions 1s shown in figure 1.

Balances

The 1ifts, dregs, and pitching moments of the two wings were
obtained on two external bslances of the Langley 9-inch supersonic tun-
nel. Some of the tests were made with an earlier balance (mentioned
herein as the old balance) whereas the remaining tests were made with a
later balance (hereafter referred to as the new balance). The old bal-
ance contained a system of self-balancing beam scales cepable of meas-
uring three corponents, 1ift, drag, and pitching moment, at stagnsetion
pressures of the order of 1 atmosphere. After the repowering of the
tunnel (to extend the Reynolds number range), the 0ld balance was modi-
fied to convert it into a six-component balance capeble of measuring
forces at stagnation pressures of the order of 4 atmospheres. The sting
mounting of the wings was identical for both balances, the rear portion
of the sting being enclosed by a windshield so that all unnecessary
external forces could be eliminated. As seen in figure 1, the nose of
the windshield was made flush with the sting shoulder and the pressure
within was adjusted to free-stream statle pressure.

Corrections, which have been standardized and considered routine
for wing-sting tests in this facility, were applied to the drag of the
wing-sting configuraitions to account for the difference between free-
stream pressure and the pressure at the base of the support sting
shoulder.

Tests

Tests were conducted at Mech numbers of 1.62, 1.94, and 2.41. Meas-
urements were mede of the 1ift, drag, and pitching moment about the
50 percent chord. Reynolds numbers of the tests based on the wing chords

were varied between 0.13 X 106 and 2.73 x 106 =t M = 1.62, between
0.13 x 10° and 2.96 x 106 at M = 1.94, and between 0.19 x 106 and

2.59 x 106 at M = 2.41. The Reynolds number for each wing was varied by
charging the tunnel stagnation pressure. The angle of attack of each
wing was indicated on & scale, graduated in degrees, by means of a light
beam reflected from a small mirror mounted flush on the sting as shown

in figure 1. The range of angle of attack was between 7° and -69.
Throughout the tests the dewpoint in the tunnel was maintained at a level
where condensation effects would be negligible.
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PRECISION OF DATA

The probable accuracies of the test variables and serocdynamlc 6
guantities at 21l Mach numbers and at Reynoclds numbers of 0.20 X 10

end 2.8 x 106 are believed to be within the limits given in the fol-
lowing table:

Center of | w, deg
R M
! e = P;eezs'::i:’ Pata Average | poiative
Initial
0.20X106 +0.0005 | £0.0007 2,11 +0.0009 | £25,000 | £0.01 +0.14 0.01
2.80 x 106 | £ .0001 |+ .0001| * .24 |[% .oo0L|#12,000 |+ .01 | * .14 | % .01

PRESENTATION OF DATA

The aerodynamic quantities of the large rectangular wing obtained
on the old and the new balances are presented in figures 2, 3, and 4 at
Mech nurbers 1.62, 1.94%, and 2.k1, respectively. The aerodynamic quan-
tities of the small rectangular wing also obtained on the old and new
balances are shown in figures 5, 6, and 7 at Mach numbers 1.62, 1.9%,
and 2.41, respectively. The various Reynolds numbers at which all of
the data were obtained are given in these figures.

It will be noted in figures 3(a), 3(b), and 3(c) at R = 2.96 x 106
(large wing) and figures 5(a), 5(b), and 5(c) at R = 1.5% x 106 (small
wing) that the range of angle of attack is somewhat limited. This was
due to the wings failing strueturslly because of high lcads incurred as
& result of unfortunste failure of electrical power to the tunnel drive
system.

Some of the 1ift data obtained on the o0ld balance at large negative
engles of attack (a < -2°) hes been omitted (see, for example,
figs. 4(a) and 4(b)) to facilitate presentation of the data.

The veriation of lift-curve slopes, pitching-moment-curve slopes,
centers of pressure, and minimum drag coefficients for the two wings with
a variation of Reynolds number ig given in figures 8 and 9 for each of
the three Mech numbers investigated. Comparison between the experimental
results and theory is also given in the two figures.

L ]
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RESULTS AND DISCUSSION

Lift

It is seen from figure 8 that good agreement is obtained between
the large and small wings with the exception at Mach numbers 1.62 and
1.9% between R = 0.9 X 106 and 1.6 x 100. For these Mach numbers and
Reynolds numbers, the lift-curve slopes of the small wing are greater
than those of the large wing. The difference in lift-curve slopes
between the two wings is helieved to be due to a varlation of the tur-
bulence level with stagnation pressure in the tunnel. It has been shown
in reference 7 that the turbulence level in the entrance cone of the
Langley 9-inch supersonic tunnel increases with lncreasing stagnation
pressure. I1f the turbulence jevel in the test section also increases
with increasing stagnation pressure, it is possible that at the highest
Reynolds number (or highest stagnation pressure), the level of turbu-
lence may be sufficlent to create a turbulent boundary layer on the small
wing and thereby reduce any separation that existed on the small wing.
Under such conditions the 1lift of the small wing would be greater than
the 1ift of the large wing at the ssme Reynolds number (but at a reduced
stagnation pressure).

Cn the besis of the above reasoning, one might logically conclude
that the transition Reynolds number will cdecrease with increasing stag-
nation pressure. However, numerous experlimental results are available
that oppose this conclusion. Resulis of experiments with a varlety of
rmodel configurations at several Mach numbers and in several tummels (see
ref. 8) show that transition Reynolds nuriber increases with increasing
tunnel stagnation pressure. At the present time, no satisfactory explana-
tion has been found for this phenomena. Therefore in view of the contra-
dictory coneclusions between the experimental results and the logical
expectations, it would be very difficult to attribute the 1lift differences
between the small and large wings to & sirple scale effect, that is,
changes in model dimensions.

As shown in figure 8, an increase in Reynolds number (by increasing
stagnation pressure) causes an increase in lift-curve slope for both the
large and small wings. However, the rate of lncreese of lift-curve slope
with Reynolds number generally decreases with increasing Mach number.

The lifi-curve slope at M = 1.62 increases as much as 18 percent over
the Reynolds number range whereas at M = 2.41 +the increase is only
10 percent.

Theoretical values oif 1ift-curve slope obtained from reference 9 are

also presented in figure 8. At Mach numbers of 1.62 end 1.94, the pre-
dicted values agree with the experimental values at the intermediate
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Reynolds numbers, but at the high Reynolds numbers experiment 1s under-
predicted and at the low Reynolds numbers it is overpredicted. At a
Mach number of 2.41, the agreement between experiment and theory is very
good throughout the Reynolds number range.

Pitching Moment

The pitching-moment-curve slopes of figure 8 are presented using a
large ordinate scale so that effects due tc the Mach number and Reynolds
nurber might be more readily observed and compared. In view of the over-
all accuracy of the measurements (+0.0007 at R = 0.20 x 100 and *0.0001
at R = 2.80 x 100) it is probable that the differences in the pitching-
moment=curve slopes of the two wings at each Mach number are not too
significant and, as a result, would seem to indicate no effect due to
model scale.

It is further seen that the pitching-moment-curve slopes of the two
wings increase to a maximum value at the very low Reynolds numbers and
then decrease at & decreasing rate as the Reynolds number 1s further
increased. This occurs at 211 the Mach numbers investigated. The
pitching-moment-curve slope at M = 1.62 varies aporoximately 23 per-
cent over the Reynolds number range whereas at M = 2.41 +the variation
is es much as 34 percent.

Theoretical values of pitching-moment-curve slope obtained from
reference 9 are in poor agreement with the experimental results at all
the Mach numbers and Reynolds numbers of this investigation.

Center of Pressure

The theoretical locations of center of pressure shown in figure 8
are between 5 and 10 percent rearward of the experimentel locations. In
general, there appears to be no significant effect due to scale through-
out the Reynolds numnber range.

Even though the quentitative agreement between theory and experiment
is not too favorable for the center-of-pressure locations, there is
agreement qualitatively in the effect of Mach number. At any Mach number
of this investigation the location of the center of pressure moves toward
the leeding edge a2t the low Reynolds numbers and then graduslly shifts
reaerward at a decreasing rate with increasing Reynolds number to a con-
siant location at the higher Reynolds numbers.
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Drag

It 1s seen in figure 9 that there are little or no significant
differences in the minimum drag coefficients between the large and small
wings at the three Mach numbers and over the Reynolds number range with
the exception at Mach number 1.62 and sbove a Reynolds number of
1.2 x 106. At this Mzch number and above this Reynolds number the mini-
mum drzag coefficients of the small wing are greater than those of the
large wing. These differences are belleved to be due to a variation of
the tumel-turbulence level with stagnation pressure as was described in
connection with the 1lifts in sn earlier section.

For the Reynolds number range of this investigation, the minimum
drag coefficients at M = 1.62 were found to decrease approximately
29 percent, at M = 1.9%, 43 percent, and at M = 2.41, 38 percent.

Theoretical wave drag coefficients ch’ laminar skin-friction
drags CDf(lam), and turbulent skin-friction drags GDp(turb) are also
iy

presented in figure 9 as z function of Reynolds number. The theoretical
wave-drag coefficients were cobtained from reference 10. The Blasius
incompressible theory was used to obtain the laminar skin-friction drags
whereas the Frankl-Voishel extended theory was used to obtain the tur-
bulent skin-friction drags. The conclusions reached in reference 7
showed that these two skin-friction theories gave setisfactory predictions
of experimentel skin frictions. A curve representing a surmetion of QDW

and. CDf(lam) (fig. 9) agrees well with the experimental results (except

at the very low Reynolds numbers) at all three Mach numbers up to the
point where trensition appesrs to begin. Transition tends to be indi-
cated by the divergence bpetween the experimentel results and the theo-~
retical results. As the Reynolds number increases, the minimum drag coef-
ficient of the large wing at M = 1.62 increases and approaches the
theoretical total drag of the wing bhaving a completely turbulent boundary
leyer.

CONCLUSIONS

An investigation has been conducted in the Langley 9-inch supersonic
tunnel at Mech numbers of 1.62, 1.94, and 2.4l to determine the effects
of model scale and stream Reynolds nurmber on the aerodynamic character-
1stics of two geometricelly similar rectanguler wings. The wings had sym-
metrical circular-arc cross sections with aspect ratios of 1.80, thickness
ratios of 0.059, and a scale factor of aporoximately 0.52. The/limits of
the Reynolds number range for this investigation were 0.13 X 10° and
2.96 x 105. The Following conclusions are indicated:
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1. Little or no scale effect was found over most of the Reynolds
number range at the three test Mach numbers. However, at Mach numbers
of 1.62 and 1.94, the lift-curve slopes and minimm drag coefficients
of the small wing at the higkher Reynolds numbers were slightly greater
than those of the large wing. This was belleved to be due to a relabtion-
ship between tunnel-turbulence levels end stagnation pressure.

2. Witk minor exceptions at the very low Reynolds numbers of these
tests, the effect of increasing Reynolds number (by increasing tunnel
stagnetion pressure) was to increase the 1ift, decrease the pitching
moment, and decrease the drzg in a manner conslstent with The change in
lamingr skin-friction drag to a point where transition appeared to occur.

Langley Aeronuatical Leboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., April 12, 1955.
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Tigure 1l.- Sketch of model assembly with the geometric parameters of the
two wings. Dimensions on sting and windshield are for large wing.
Similar dimensions on small wing are reduced by an average factor of

0.52. All dimensions are in inches.

d y
— I SN YL
" b - et
[
Wing Dimensions
¢ wing| b | ¢ | ¢
Large|4970[2.743|0163
|
i {040 Small[2.572] 14 3010084
A=1.80
t/c=0.059
i
Sting- ——____ 19 7i5
1L
Mirror ——— 12 .T._._J_ 50— L
i[1|Fe—— | |
—7- “\:— .20 ’, ‘
|
Windshield——1_|}| | IR
- \—.|0 375 ’, L
l \ | \
/ \ \
LAl [ A

ST

62055 T ¥ VOVN



g 20 T o P S [ 1111
08 I R=025xI0"[ |R=0.26xI07 |R=0.37xI0 R=049x10 6L
s g Ji] R=050xI0
A1 A /
o4 .12 A y , e
A p 7 i
< Oz 08 i . i I;T(. &
E-Qq_g 04 A / NP 1
g g AT mEpid ? ‘
208z 0 A ¥ A 4 -
el il g . T ;
] -.|2()_‘.0 S L i }5 iy -
4 l/
-1 6] -08——({{1 1t u/ U’ \'/
ool - {
0 I T 01 2 3 4 )
0 ls?\g Bulunce dala 4 3 2 -1 0 1 2
Q alance data a,deg
g .16 " AN ARENEEEEEEEE
ok 12 =074xI0 —[R=095xI0° [ | R=098x10°] e AEE
P AT Rel45x10° [|R=188xI0
ol 4 )]
3 Org 08 ¢ ST A Re2.73XI0°
5] N / * L/ -
-§'04‘g 04— P /\T{ 5 , d 1
2 -08& 0 /{ - £ .}p/ 12 17
= 1 -l Vi
J J 7 ¥ pig
o127 -0 K ; 5 7 }UZ - 7
3
-8 08T T% T 7
20t -13 - 8
LI - ! - o
4 -3 -2 - )
° -2 -1 0 1 2
s 0 1 2
a,deq
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Flgure 2.- Aerodynamic characteristics of the large A = 1.80 rectangular
wing at M = 1.62 for various Reynolds numbers.
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Figure 2.- Continued.
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Figure 3.~ Aerodynamic characteristies of the large A = 1.80 rectangnlar

vwing at M = 1.9% for various Reynolds numbers.
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